

Proposal of New IGS-SSR Ionospheric RMS Message

Ningbo Wang

Ionospheric RMS Spherical Harmonic Correction

The global ionosphere Root Mean Square (RMS) Maps provide quality indicators for VTEC corrections through a global spherical harmonic representation. These RMS values are computed using the spherical harmonic basis function as those applied in the VTEC field and serve to quantify the uncertainty or expected error associated with the ionospheric corrections. RMS values are expressed in TECU and are typically used as formal precision indicators for quality assessment and validation. As the mathematical formulation used for vertical RMS (VRMS) representation is identical to that of the VTEC spherical harmonics expansion, the corresponding VRMS computation procedure follows the description provided in [Section 4.5.1 of IGS-SSR Format Version 1.00](#).

The *VRMS* contribution for each layer is computed in TECU as:

$$VRMS(\varphi_{PP}, \lambda_{PP}) = \sum_{n=0}^N \sum_{m=0}^{\min(n,M)} (C_{nm} \cos m\lambda_S + S_{nm} \sin m\lambda_S) P_{nm}(\sin \varphi_{PP})$$

The slant RMS (*SRMS*) contribution of the layer is computed in TECU with

$$SRMS_i = \frac{VRMS}{\sin(E + \psi_{PP})}$$

The angle ψ_{PP} is the spherical Earth's central angle between rover position and the projection of the pierce point to the spherical Earth's surface. It is computed in radians by:

$$\psi_{PP} = \pi/2 - E - \arcsin\left(\frac{R_e + h_R}{R_e + h_I} \cos E\right)$$

E	elevation angle of satellite at rover position in the spherical Earth model [radians]
R_e	spherical Earth's radius of 6370 km
h_I	height of ionospheric layer above the spherical Earth model [km]
h_R	height of rover position above the spherical Earth model [km]

SSR Ionosphere RMS Spherical Harmonic Message

[Table 1](#) through [Table 4](#) provide the contents the SSR Ionosphere RMS Spherical Harmonics Message. The message consists of header part ([Table 1](#)) followed by the model for every individual ionospheric layer ([Table 2](#)). Every ionospheric layer model has an Ionosphere RMS Layer Header and two subsequent model parts with Cosine Coefficients ([Table 3](#)) and Sine Coefficients ([Table 4](#)).

Data Field	IDF Number	No. of Bytes	No. of Bits	Notes
RTCM Message Number	DF002	uint12	12	Always “4076” for IGS Proprietary Message
IGS SSR Version	IDF001	uint3	3	
IGS Message Number	IDF002	uint8	8	202
SSR Epoch Time 1s	IDF003	uint20	20	
SSR Update Interval	IDF004	bit(4)	4	
SSR Multiple Message Indicator	IDF005	bit(1)	1	

Data Field	IDF Number	No. of Bytes	No. of Bits	Notes
IOD SSR	IDF007	uint4	4	
SSR Provider ID	IDF008	uint16	16	
SSR Solution ID	IDF009	uint4	4	
VTEC Quality Indicator	IDF041	uint9	9	
Number of Ionospheric Layers	IDF035	uint2	2	
TOTAL			83	

Table 1 : Header Part of the SSR Ionosphere RMS Spherical Harmonics

For each ionospheric layer follows one section consisting of three parts, one Ionospheric Layer Header Part ([Table 2](#)), one block with Cosine Coefficients ([Table 3](#)) and one block with Sine Coefficients ([Table 4](#)).

Data Field	IDF Number	No. of Bytes	No. of Bits	Notes
Height of Ionospheric Layer	IDF036	uint8	8	
Spherical Harmonics Degree	IDF037	uint4	4	
Spherical Harmonics Order	IDF038	uint4	4	
TOTAL			16	

Table 2 : Header Part for an Ionospheric Layer

The number of cosine terms of the Cosine Coefficients Part depends on the order and degree of the spherical harmonic expansion. Refer to the corresponding Data Field Note for [IDF039](#).

Data Field	IDF Number	No. of Bytes	No. of Bits	Notes
Spherical Harmonic Coefficient C	IDF039	int16	16	
TOTAL			16	

Table 3 : Model Part of the SSR Ionosphere RMS Spherical Harmonic Cosine Coefficients

The number of sine terms of the Sine Coefficients Part depends on the order and degree of the spherical harmonic expansion. Refer to the corresponding Data Field Note for [IDF040](#).

Data Field	IDF Number	No. of Bytes	No. of Bits	Notes
Spherical Harmonic Coefficient S	IDF040	int16	16	
TOTAL			16	

Table 4: Model Part of the SSR Ionosphere RMS Spherical Harmonic Sine Coefficients

SUB-TYPE MESSAGE SUMMARY

[Table 5](#) is an overview of SSR Ionosphere RMS Spherical Harmonics Sub-Type Message.

IGM Type	GNSS	IGM Type Name	Sub-Type Mess	Notes
-	GNSS	SSR Ionosphere RMS Spherical Harmonics	IM202	

IGM Type	GNSS	IGM Type Name	Sub-Type Mess	Notes
			IM203 – IM254	Reserved

Table 5: Overview of SSR Ionosphere RMS Spherical Harmonics sub-type messages (IM)

Table 6 is a list of general IGS SSR Sub-Type Messages, which do not depend on an IGS Generic SSR Message type.

Sub-Type Message	Message Name	No. of Bytes	Notes
IM202	SSR Ionosphere RMS Spherical Harmonics	10.375+2* N_{IL} +2* N_{HC}	N_{IL} = No. of ionospheric layers N_{HC} = No. of Spherical Harmonic Coefficients(total over all ionospheric layers)

Table 6: General IGS SSR sub-type messages (IM)

Data Field Summary

Table 7 describes the additional data fields required to support the IGS SSR messages. The data field number is prefixed with “IDF” to indicate the IGS SSR relevant data fields. RTCM3 data field numbers are prefixed with “DF”.

IDF #	IDF Name	IDF Range	IDF Resolution	Data Type	Data Field Notes
IDF001	IGS SSR Version	0 – 7	1	unit3	The IGS SSR Version is part of the sub-framing and is valid for all sub-type messages: 0 – experimental 1 – 6 Version 7 – reserved for extension of version range
IDF002	IGS SSR Message Number	0 – 254	1	uint8	IGS RTCM3 Sub-Type Message Number 255 – reserved for extension of sub-type message range
IDF003	SSR Epoch Time 1s	0 – 604799 s	1 s	uint20	Full seconds since the beginning of the week of continuous time scale with no offset from GPS, Galileo, QZSS, SBAS, UTC leap seconds from GLONASS, -14 s offset from BDS
IDF004	SSR Update Interval	0 – 15	1	bit(4)	SSR Update Interval. The SSR Update Intervals for all SSR parameters start at time 00:00:00 of the SSR Epoch Time. A change of the SSR Update Interval during the transmission of a SSR data stream is not allowed. The supported SSR Update Intervals are: 0 – 1 s

IDF #	IDF Name	IDF Range	IDF Resolution	Data Type	Data Field Notes
					<p>1 – 2 s 2 – 5 s 3 – 10 s 4 – 15 s 5 – 30 s 6 – 60 s 7 – 120 s 8 – 240 s 9 – 300 s 10 – 600 s 11 – 900 s 12 – 1800 s 13 – 3600 s 14 – 7200 s 15 – 10800 s</p> <p>Note that the update intervals are aligned to the GPS time scale for all GNSS in order to allow synchronous operation for multiple GNSS services. This means that the update intervals may not be aligned to the beginning of the day for another GNSS. Due to the leap seconds this is generally the case for GLONASS.</p>
IDF005	SSR Multiple Message Indicator	0 – 1	1	bit(1)	<p>Indicator for transmitting messages with the same Message Number and SSR Epoch Time:</p> <p>0 – last message of a sequence 1 – multiple message transmitted</p>
IDF006	Global/Regional CRS Indicator	0 – 1	N/A	bit(1)	<p>Orbit corrections refer to CRS:</p> <p>0 – ITRF 1 – Regional</p>
IDF007	IOD SSR	0 – 15	1	uint4	<p>A change of Issue Of Data SSR is used to indicate a change in the SSR generating configuration, which may be relevant for rover operation.</p>
IDF008	SSR Provider ID	0 – 65535	1	uint16	<p>SSR Provider ID is provided by RTCM on request to identify a SSR service. The Provider ID shall be globally unique. Providers should contact “rtcm.org”.</p> <p>0 to 255 - reserved for experimental services</p> <p>256 to 65535 - unique SSR Provider ID</p>
IDF009	SSR Solution ID	0 – 15	1	uint4	SSR Solution ID indicates different

IDF #	IDF Name	IDF Range	IDF Resolution	Data Type	Data Field Notes
					SSR services of one SSR provider
IDF035	Number of Ionospheric Layers	0 – 3 (N _{IL} : 1 – 4)	1	uint2	Number of Ionospheric Layers -1 (N _{IL} -1). The VTEC spherical harmonics model consists of one or more infinitesimal thin ionospheric layers.
IDF036	Height of Ionospheric Layer	0 – 2550 km	10 km	uint8	Height of the ionospheric layer
IDF037	Spherical Harmonics Degree	N-1: 0 – 15 (N: 1 – 16)	1	uint4	Degree-1 (N-1) of spherical harmonic expansion of global ionosphere in latitude
IDF038	Spherical Harmonics Order	M-1: 0 – 15 (M: 1 – 16)	1	uint4	Order-1 (M-1) of spherical harmonic expansion of global ionosphere in longitude (local time)
IDF039	Spherical Harmonic Coefficient C	± 163.835 TECU	0.005 TECU	int16	<p>Cosine parameters of spherical harmonics expansion of degree N and order M. The number of cosine parameters is:</p> $\frac{(N + 1)(N + 2)}{2}$ $- \frac{(N - M)(N - M + 1)}{2}$ <p>163.84 indicates data out of range or not available.</p>
IDF040	Spherical Harmonic Coefficient S	± 163.835 TECU	0.005 TECU	int16	<p>Sine parameters of spherical harmonics expansion of degree N and order M. The number of sine parameters is:</p> $\frac{(N + 1)(N + 2)}{2}$ $- \frac{(N - M)(N - M + 1)}{2}$ <p>-163.84 indicates data out of range or not available.</p>
IDF041	VTEC Quality Indicator	25.55 TECU	0.05 TECU	uint9	<p>VTEC quality indicator for vertical ionospheric effect not described by the spherical harmonic expansions.</p> <p>0 – unknown 25.55 – indictor exceeds 25.54 TECU</p>